MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters

Qizhen Weng^{+*}, Wencong Xiao^{*}, Yinghao Yu^{*+}, Wei Wang⁺, Cheng Wang^{*}, Jian He^{*}, Yong Li^{*}, Liping Zhang^{*}, Wei Lin^{*}, and Yu Ding^{*}

⁺ Hong Kong University of Science and Technology *Alibaba Group

Motivation

Challenges in scheduling ML workloads

- Characteristics:
 - Heterogeneous ML workloads and GPU machines
- Problems
 - Low utilization caused by fractional GPU uses
 - Long queueing delays for short-running task instances
 - Hard to schedule high-GPU tasks
 - Load imbalance
 - Bottleneck on CPUs

Key insights

- Key insights that the paper leverages to solve the problem
 - GPU sharing
 - Predictable Duration for Recurring Tasks (Shortest Job First)
- Key contributions
 - Profiling of PAI traces
 - Temporal pattern
 - Recurring tasks
 - short-running instances usually spend a larger portion of time in queueing
 - Spatial pattern
 - Heavy tail distribution
 - CPU bottleneck
 - New scheduling algorithm

Shortest Job First scheduling

Figure 12: Percentage prediction error, i.e., (true-pred)/true in percentage, of duration estimates with different features.

Predicting duration of recurring tasks by hashing metadata

Figure 13: Average task completion time given different GPU cluster sizes and various scheduling policies in simulation.

Lower avg completion time using SJF

System

- Scheduling policy
 - Reserving-and-packing scheduling policy
 - Prioritize high-GPU tasks (by definition of computation efficiency)
 - a performance model that accounts for many task features, such as the degree of parallelism, the used ML model, the size of embedding
 - Load balancing
 - prioritizes instance scheduling to machines with low allocation rate
- Tradeoffs
 - Reserving-and-packing >> Load-balancing
 - Fairness of reserving-and-packing

Reserving-and-packing vs Load-balancing

(a) Queueing delays of all instances and tasks.

Evaluation

- Open Challenges
 - Mismatch between machine specs and instance requests (#CPUs vs #GPUs)

Table 2: Mismatch between machine specs and instance requests, in terms of the provisioned/requested CPUs per GPU.

vCPU cores per GPU	All nodes	8-GPU nodes	2-GPU nodes
Machine specs	23.2	12.0	38.1
Instance requests	21.4	22.8	18.1

- Overcrowded weak-GPU machines vs less crowded high-end machines
- CPU bottleneck
 - Especially for some ML workloads (CTR)

Discussion

- Strengths
 - Comprehensive profiling of the system
 - Identified the insight of recurring tasks
 - Go into the details of recurring tasks \rightarrow SJF scheduling algo
 - Prediction of task duration is accurate and well evaluated
 - Graphs show CDF of queueing delay
- Critique
 - Could have done more evaluation of the improved scheduling algorithm
 - Comparison of R&P vs load-balancing doesn't show the interplay of the two
 - Missing comparison of the final algorithm vs the original
 - What are some other alternatives
 - Other ways of leveraging the properties identified
 - More details on GPU sharing

Discussion

- Clarifying questions
 - What are some intuitive reasoning on how different algorithms have different distribution of IO/GPU/CPU time
 - Details of scheduling algorithm
 - What constitutes an allocation plan? What are the buckets of machines?
- Discussion and Debate:
 - Benefits and Challenges of having heterogeneous machines
 - GPU sharing mechanism
 - How it is done, see paper 2
 - De-coupling CPU work from GPU work
 - CPU bottleneck: research to reduce CPU time in data processing